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Previous spin-wave-renormalization calculations, even those including correlation effects,
have been unable to explain correctly both the temperature and field dependence of the mag-
netization of ferromagnetic CrBrz. However, these calculations were based on a simplified
model lattice, which has been shown by recent neutron-diffraction experiments to be only

qualitatively correct.

In the following, we present a first-order renormalized spin-wave the-

ory which takes into account the true crystallographic structure of CrBrsg. This theory ex-
plains simultaneously the temperature and field dependence of the magnetization and the mag-

non dispersion curves.

Although the simplified model contains only two exchange parameters,

while the exact model contains five, we find that once the true crystallographic structure is
introduced, a two-parameter model can explain M(T, H) and the low-energy part of the mag-
non spectrum. We conclude that the previous discrepancies between theory and experiment
were not a result of any failure of spin-wave theory or of the presence of too few exchange
parameters, but were due simply to a misrepresentation of the crystal structure.

I. INTRODUCTION

CrBr; is a rhombohedral insulating ferromagnet
with T,=32.5°K. Because of its weak layered
structure, this system is particularly useful for
testing the validity of spin-wave renormalization
calculations.!

Nuclear-magnetic-resonance (NMR) measure-
ments?~5 have furnished a very accurate determina-
tion of the magnetization M(7, H) versus tempera-
ture and field. These results were explained by
means of various spin-wave theories. Because of
the complicated crystallographic structure of CrBrj,
a simplified model was introduced by Gossard,
Jaccarino, and Remeika,? involving only two ex-
change parameters: J, between nearest neighbors
in adjacent planes and J, between nearest neighbors
in the same plane. From their measurement of

M(T, 0) versus 7, Davis and Narath® calculated J
=0.497+0.013 °K and J;, =8.25%0.10 °K using a
self-consistent first-order renormalized spin-wave
theory. However, as has been recently shown,5
while this set of values of the two exchange param-
eters gives a very good fit to the magnetization
M(T, 0) versus T in zero field, it does not explain
the magnetization M(T,, H) versus H at T,=18 °K.
In fact, it is shown in Ref. 5 that even a more so-
phisticated spin-wave theory correct to all orders
in the magnon-magnon interaction is unable to ex-
plain simultaneously the M(T, 0)-vs-T and M(T,, H)-
vs-H data. The authors attributed this inability to
the inadequacy of the two-parameter model, citing
as evidence recent inelastic neutron scattering
measurements® of the magnon spectrum. Indeed,

a five-parameter model (which takes into account
the true crystallographic structure) was introduced
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in Ref. 6 to describe the observed spin-wave spec-
trum.

It is the object of this paper to derive the first- -
order renormalized spin-wave theory for the five-
parameter model to see whether or not it is possible
to obtain a unique set of parameters which gives a
good fit to both the M(T, 0) and M(T,, H) data and,
if it is, to compare it to the set determined in Ref.
6. In fact, we may expect some differences between
the two sets to appear, since we shall neglect cor-
relations between spin waves. In Sec. I, we de-
velop a formal Hartree-Fock theory of spin waves
in CrBrj closely following Davis and Narath. We
then compare the predictions of this theory to the
neutron-diffraction experiments. In Sec. IV, we
calculate both the temperature and field dependence
of the magnetization M(7, H).

II. GENERAL THEORY

CrBr; has a Bil;-type crystal structure, which
is invariant under the operations of the space
group R3. The unit cell is rhombohedral and con-
tains two Cr* ions. We consider a system of 2N
spins with periodic boundary conditions; the spin
operators corresponding to the spins of the two
sublattices are denoted R, and §; with IR;| = IS,|=S.
H,(7T) is the anisotropy field directed along z, as
measured by Dillon.” J,, J,, J,and Jg, J; are,
respectively, intersublattice and intrasublattice
exchange parameters. &' and § are vectors from a
given spin site to neighbors belonging, respective-
ly, to the same and different sublattices (the vec-
tors 5’ and § relative to a site R and a site S are
opposite). The Hamiltonian is

€= —gupH,(T) (?Rf +? S,')

- D (DR 8D § R,
i 3 0m "

m=1,2,4 M6,

-2 J(Z) Ry Ry, +2 §- sM.>. 1)

m=3,5 \i,6, 3, B,

We introduce the angular momentum raising and
lowering operators Rj=Rj+ R} and Sj=S{+S]. Per-
forming the Dyson-Maleev transformation,® ® we
have

R{=S-0bjb, ,
R;=(25)'/2p],

R;=(2S)'2 (b, - blb,b,/25) ,
S§7j=8- a}a, ’

S;=(28)!24},

S;=(25)"2 (a; - ala;a;/2S) .

(2)
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Fourier transforming with, e.g., a,=N"'/2
X3, e *iq;, and introducing the quantities

Ey=—2g1gNSH,(T) = 2NS*[Jp(0) +J5(0)], (3a)

Jsp(B)= 20 Jp2oe'® Im=g,(k) + J,(k) + J4(R) ,
m=1,2,4 6y (3b)
JRS(k)_JSR(k)* (3¢)
Jre(R)= 20 J, Ee'“‘ B = Jy(k) + J5(k) (3d)
m=3,5
we write
H=3Co +3Cy (4)
where

3o = Eo"le [graH,(T)+25J55(0)
+2SJ 5 (0) = 25Tz ()] (ala, + b]D,)
- 2523, [Jgs (k)bla, + Jsp(k)aby],  (5)

and
y== 23 6(ky+ky—kg—Fky)
1,2,8,4

X{[Jrr (k1) = Trrlks = #y)] (‘41“;2%3%4’“ bilbizbksbk4)
+Jsr (kl)bl,alzakaak4 +Jsr(=ky) allblzbksbk4
- 2JSR(k2 - kl)aglbzzakabk4}. (6)

3Cy is diagonalized through the following transforma-
tion:

a,=(1/V2)e** (a, +8,) ,
=(1/V2)e**(a, -8y ,
with
e4% = Jsp(= k)/Jsg (k) . (8)

(7

The diagonal form of 3¢, is
30y = Eq+ 25 fA(R) - [B(R) ]V 2}ata,

+ 2 {AR) +[BR)M 21818, ,  (9)
with

A(R)=2S[J 55 (0) + Rz (0) — IR (B)] , (10a)

B(k)=48%J 55 (R)Isp (- E) . (10Db)

¥C, represents the energy of Holstein-Primakoff
spin waves which are the true collective excitations
of the system at low temperatures; ofa, is the num-
ber of acoustical spin waves of wave number 2,

BiB, the number of optical spin waves. The above
result was given in Ref. 6. Writing 3¢, in terms of
the o’s and #'s and linearizing, which corresponds
to a self-consistent first Born approximation to
Dyson’s theory,'® we obtain the renormalized spin-
wave energies (the upper sign holds for the optical
branch and the lower for the acoustical one):
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IS

€1:1(T) =gl HA(T) +25{J55(0) + Tz (0) = Trp(By) £ [T 55 ()T (= y)] 1z}

1
N ::"[JRR(O) +JRR(k2 ~-ky) - JRR(kI) - JRR(kZ)] « al:gak3> + <B;sz2 )
2
1
- ﬁz; {Tsr(0)F 3 J5e (kg = ky) €% kg™ Oy ¥ 3T sg(Ry — k) €% ©r17%2 & [T (k)T s (= kl)]l/z
kg

= [Vsr (ko) sr (= R2) 2} 01;:2%2 ) -’11\7 kE {Tsr(0) £3Tg5 (ky = by) €% ka0 £ L7 1 (g - By) €% ©r1-0r2)
2
£ [Tsp(ky) Ts (= o) 2 + [T (o) 5 (~ k)21 BL,Bey ) 5 (1)
[

with First of all, we remark, as in Ref. 3, that

1
(o) =—gem7er—T >

12) % (VR (0) +Trr(ky = ky) = Tpr (ky) = Tpr ()| (ol s, )
(BLB0) =TT — - I ()
=2 [rn(0) = Tnaler)][1 - 22 ] (ol )
The symmetry properties of the crystal do not en- ky RR
able us to simplify the above expressions. As we (13)
shall see, however, since J; is much bigger than
all the other exchange parameters, it is possible to ~ The above result follows from the relation

introduce renormalization factors as Davis and
Narath did. JIrr(k)=d3(k) +J5(R) . (14)

We now observe that, since J;, >J,, J, then
[Tsr (R) sg (= R) /2 = [, (k) (= &) |2+ 3T5(= B[, (R)/ Ty (= ) ]112

+5J,(R) Iy (= B)/ Ty (R) 2 + 3T, (= Ry (R)/ Ty (= B) 2+ 3T, ()T, (= B)/ 9, ()2 . (15)

Using Eqgs. (13) and (15), we obtain
& (T)=gupH, (T) + 25{J,(0) [, (R)Jy (= &) [/ 2}, (T) +S{J,(0) £ Jo(= B)[ I, (R)/ T (= k)] BEo(T) +c. c.

+28[73(0) = J3(R)]£5(T) +S{74(0) £ T, (= B[y (R)/Jy (- B) ]2} £ (T) +c. c.

+28[J5(0) - J5(R)] £5(T) (16)

where
1 EACRIAS k')]”z) - ( PACREACY: >]"2) y ]
& (T)=1- ZSN ? [(1 - J1(0) <ak' ap )1+ J, ©) (Bk'ﬁk' N,
1 Jy(k') (Jy(=F ' Jy(') (J,(— 1e')>“2 +
£(T)=1~ 2&\1?{[1 7,(0) ( FACY) > z]<ak' % >+[1+ 5,0 \J,(%") ]<B”'B’°' s )
£(T)=1 ZSN (1 > ((ak, O )+ (B Bur ) )
|
and the expressions for £,(7) and £5(7) are similar fined in Ref. 6) the quantities
to £,(T) and £4(T), respectively. . - . . -
Inztroducing, as in Ref. 6 (f;, i, t;are the rhom- a=k-t,, B=k-t;, v=k-t5, (18)

bohedral vectors defining the unit cell and are de- and
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U=cos(a+B~7y)+cos(B+y—a)+cos(y+a-g),

V=cosa +cosp +cosy , (19)

W=cos(a -B)+cos(8-y)+cos(y - a),
we may write

€(T)=gupH o(T) + 257,[3+ (3 +2W,)'/2)¢,

+25J, (1 + W) £y +4ST4(3 = W, )Es

+68J, (1 + E%—%%%) £, +4ST(3 - V)Eq .

(20)
In conclusion, we have taken advantage of the
large value of J, compared to the other exchange
parameters to write the expression

(1) =20, €(J,)En(T) , (21)

which, for arbitrary values of J;, is valid only for
centrosymmetric ferromagnets.!!

The above expression is valid everywhere in the
Brillouin zone, except near the surface where
(3+2w)*2=0. we note, however, that the magnons
which are important for the thermodynamical
properties of CrBr; have their K vector inside a
cylinder of axis z, limited by two planes perpen-
dicular to z, and of small radius compared to the
distance between the planes. The surface (3+2W)!/2
=0 is well outside this cylinder, and consequently
the expression above may be used to calculate the
magnetization M(T, H), as we shall see in the fol-
lowing.

III. COMPARISON TO NEUTRON-DIFFRACTION
EXPERIMENTS

A. Noninteracting Spin Waves

The spin-wave spectrum of CrBr,; was measured®
along the directions A, A, =, F, and B at 6 °K,
a temperature for which the renormalization effects
are almost negligible. We therefore take £, =1 in
the preceding formulas when comparing to these
experimental results. However, we first ask if
these results may be explained with the two-param-
eter model.>® According to this model, the acous-
tical Z branch has the energy

€,(0)=gupH,(0) +4SJ, (1 - cosc’k) , (22)

where ¢’ is the interatomic distance along Z.
The experimental result® for the A(Z) direction
is

€ (0)=¢y+¢,(1 ~cosc’k) , (23)

and consequently the Z branch is well described by
the simplified model. The value of J; obtained from
€, is also in good agreement with that deduced from
the NMR experiments. Along T or A directions in
the ¢ plane, the simplified model gives
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€:(0)=gugH,(0)+ D(a'k)? (24)

for small values of 2, where D=%J, and a’ is the
interatomic distance in the ¢ plane. For the = and
A directions this describes the experiment® well
and gives a reasonable value for J,. The inade-
quacy of the two-parameter model appears when
comparing the A, = and F, B branches. For F and
B, which are directions parallel to = and A but
displaced by a full reciprocal-lattice vector in Z,
the result® is

€:(0)=gupH,(0) +4SJ, + D (a'ky,) . (25)

According to the simplified model, the transverse-
part of the energy is independent of Z, so that one
should have D’ =D, which is not the case experi-
mentally, where D’/D=~0.92+0.05. This means
that onehas no additivity property of the type €;= €hyy
+€;,, s in the simple two-parameter model.>*

Now we come back to the true model and see how
the main features of the spin-wave spectrum may
be explained. In the Z direction, from Eq. (18),
a=B=7v. Using the fact that J; > J,, J;, Jy4 J5 wWe
obtain

€:(0)=gugH,(0) + 25(J, + 3J,+ 6J5)(1 - cosa) ,
(26a)

€. (0)=gugH,(0)+2S

X[6J, + (I, +8J,) (1 + cosa) + 6J5(1 ~ cosa)] .
(26b)

Consequently, as confirmed by experiment,® the
energy of the acoustical Z branch is proportional
to 1 — cosa and independent of J,. We note that,
owing to the symmetry properties of the crystal,
the phase difference between the spins R and S is
identically zero at the zone center (I'). Some phase
difference which depends on the exchange parameters
may appear between the two sublattices along the
Z branch but it is almost zero between an R spin
and an S spin belonging to the same plane. In fact,
the J; contribution to €;(0) is very weak, since W
=3 along Z. In addition, the optical Z branch is
very flat, since J;>dJ,, J, Js. Only in the simpli-
fied model?® are the optical and acoustic Z branches
parallel.

Comparing the two models, we find that the
acoustical Z branch gives an effective longitudinal
exchange parameter J;, and we have the relation

2JL=J2+3J4+6J5 . (27)

Let us now consider the T acoustical branch. As
a consequence of the fact that J, is by far the larg-
est exchange parameter, we obtain from Eqs. (18)-
(20), for small values of the wavenumber (3=7y=
za),

€;(0)=gugH,(T)+Da?, (28)
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with
(29)

The same result holds for the A branch. For the
F and B branches, we have from Eq. (18)

D=3(J, +6J5+d,+2J5) .

a=az+a’, B=az+B', y=ay+y . (30)
The same relations between o', ', ¥’ hold as
between «, B, y for the = and A directions, and
we obtain

€:(0)=gugH (T)+4SJ,+D'a’?, (31)
with
D' =% (J1+6d3—Jy—dy— 2J5) . (32)

The true model thus explains why D’ #D, More-
over, we may consider that J;+ 6J3 is an effective
transverse exchange parameter similar to J.

At this point, we note that the thermodynamics
of CrBr; is determined by the acoustical Z branch
and the quadratic part of the in-plane or out-of-
plane branches, i.e., by J;, D, and D’. Since this
part of the spectrum is insensitive to the ratio
J3/J; (this is not true for the magnons of large
k,,), just one relation between J,, J,, and J; is
necessary to describe the NMR results. We show
below that the introduction of three parameters
(Jr, Iz, and J, or J;, D, and D’) gives a good fit
both to M(T, 0) and M (T4, H). Moreover, we show
that this result is #not a consequence of the increased
number of parameters.

B. Interacting Spin Waves
For the acoustical Z branch, we have
€x(T)=gupgH4(T)+2SJ,(1 - cosa)é,
+6SJ4(1-cosa)éy+12SJ5(1 - cosa)é; .
@33)

As we have checked by numerical calculation (see
Sec. IV), the renormalization factors &,, &,, and
&5 are almost the same. Consequently, in the
first-order theory, even when using the true mod-
el, the renormalization of the acoustical Z branch
is & independent. This result is also predicted by
the simple model, and the magnitude of the &’s
(~0.12-0.15 at 0.67,) is in good agreement with
the experimental results, ® within the accuracy of
the measurement.

For the acoustical Z branch, we have

€ (T)=gnpHA(T)+§(J 181+ 6J3E5) &F

+3(Jea+ 2d5E5)a% . (34)

As J; is much’'larger than the other exchange pa-
rameters, the renormalization of this branch de-
pends mainly on &;, and consequently it is 2 inde-
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pendent from I to the edge of the Brillouin zone.
The same result holds for the A branch, except
just near the maximum value of the energy, for the
F and B branches, and for the optical branches.
Again, the value of £; (~0.03 at 0.67,) is in good
agreement with the experimental result® for small
values of k2 and 2,. However, recent measure-
ments*? of AE/E for larger values of k, suggest
that the renormalization of the A branch is & de-
pendent. This cannot be explained within the
framework of the Hartree-Fock approximation.

IV. CALCULATION OF THE MAGNETIZATION M(T, H)

In the first-order spin-wave theory there are
no lifetime effects, so that the magnetization is
given by

M(T,H)= (I/VBz) fBzdSk(eB[luBHA(Thek(T)]_ 1)-1 ,
35)

where €,(T) is the renormalized energy spectrum
given in Eq. (20), and Bz means Brillouin zone.

To calculate M (T, H), we use the true reciprocal
unit cell (o, B, v varying from 0 to 27). The in-
tegrations are performed by means of Simpson’s
rule. As a first approximation, we choose a rea-
sonable set of the exchange parameters from the
neutron-diffraction data. Knowing D, D’, and J,
we take Jy=J5 and J3=0 (the important spin waves
have a quadratic energy in the plane, and conse-
quently only the linear combination J, + 6J3 has to
be determined). Furthermore, we choose J,=J,,
so that we are left with two parameters which may
be called J; and J,. In fact, we know the true
value of the ratio J,/J, from J;, D, and D’, or
more precisely from Ref. 6, but we do not expect
it to give the best fit to M (T, H); indeed, we are
neglecting the correlations between spin waves,
which, as we shall show, influence only slightly
the magnetization, but much more the value of
Jz, and consequently the ratio J,/J,.

In order to check the validity of the approximate
form of the energy spectrum given in Eq. (16),
we have calculated the reduced magnetization
M (T, 0) without any renormalization using first
the exact expression of €;(0) [Eq. (11)], then the
approximate one (which is obtained from the condi-
tion J; > J;). The surface where this approximation
is not valid is easily discarded by the integration
procedure, and we have checked that the relative
error introduced by the approximation is less than
107, therefore negligible. In addition, we have
found that the magnetization is almost insensitive
to the existence of the optical branches (error 107%)
and quite insensitive to the exact value of the
spin-wave energies far from I in the xy plane.
Finally, our result for the renormalization coef-
ficients £; at 18 °K is that &,, £,, and &; are similar
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and comparable to £, of Ref. 3, while £, is com-
parable to &, of Ref. 3 (£5 has a roughly interme-
diate value). The theoretical values compare
favorably with the experimental ones, ® and we
again have verified that in the first Born approxi-
mation, the renormalization is 2 independent along
the Z, A, and Z branches.

The results of our numerical computations of
M (T, H) are summarized in Fig. 1. It is possible
to find a curve I in the (J;,Jr) plane each point
of which gives a good fit to M (T, 0) versus 7.
Similarly one finds a curve II each point of which
gives a good fit to the susceptibility at 18 °K.
These two curves cross at P near the values

J;=0.414°K, J;=8.60°K. (36)

A similar situation was found in the two-parameter
model, ® but the two curves did not cross. In the
preceding calculation, we have neglected self-
consistency and correlation effects; these effects
have been evaluated for the simplified model. ®
Taking them into account would probably translate
the curve I to I’. The quality of the fits described
here is very similar to that found in Refs. 3 and 5.
The theoretical values fall well within the scatter
of the experimental points in all cases.

The values of the exchange parameters deter-
mined above do not agree very well with the neu-

8.50

8.40

Jr(°K)

8.30

L ! | | |
040 0.45 0.50

LK)

FIG. 1. Sets of exchange parameters (Jy, Jz) which
give a good fit to the experimental observations: curves
I and IIT fit to M(T, 0), curves II and IV to M(T,, H),
Ty=18°K. For curves I and II, which cross at P, Jy=dJy;
for curves III and IV which cross at @, J,=0.

tron-diffraction values, even if we allow a correc-
tion for the self-consistency and correlation ef-
fects; particularly, the value of the effective J
is too low. However, we have arbitrarily chosen
the ratio J,/J, to be 1, and we should allow this
quantity to vary.

Increasing J, /J, leads to a higher value for J;
(curves III and IV crossing in @) and finally we get
a good fit to M (T, 0) and M (T, H) for the following
values of the parameters, which agree with the
experimental value® of the difference D-D':

Ju=0, J,=J.=0.43°K, J,=8.55°K.  (37)

Taking into account the order of magnitude of
self-consistency and correlation effects brings

J to slightly more than 0.46 °K, which is com-
patible with the acoustical Z branch of the magnon
spectrum. The exchange constants given in Eq.
(37) then represent well the low-energy (thermo-
dynamically important) spin waves.

To get a good fit to the Z and A branches far
from the center of the Brillouin zone, we must
increase the value of J; to about 8. 80 °K, there-
fore we introduce J3 <0. This implies no significant
change of J;, since the part. of the spectrum which
is modified is only slightly populated even at 20 °K,
and the final values of the parameters J,, J,, and
Js differ slightly from those determined by Samu-
elsen et al.® from the neutron data.!® This slight
difference is to be expected, since we have used
a first-order spin-wave theory, and the effects of
higher-order interactions on M (T, H) have been
shown®® to be nonnegligible. At any rate, we wish
to stress here that the motivation of the present
work is not to put precise limits on the exchange
constants, but to show that with the use of the true
crystal structure one may formulate a spin-wave
theory which describes equally well M (T, 0) and
M (Ty,H). Of course, we expect the exchange con-
stants used to give a reasonable agreement with
the measured spectrum, ® and they do.

Finally, we compare the two models: the two-
parameter model of Gossard, Jaccarino, and
Remeika? (two exchange interactions J, and J;)
and the true model with J; and J, being the only
nonzero exchange parameters (Fig. 2).

In the first model, we have identical planes
stacked along z, two atoms in each cell, in a plane;
above and below an R atom are R atoms. In the
second model, we have three kinds of planes
packed along z according to the sequence ABCABC.
The symmetry is in fact rhombohedral, with two
atoms in each cell, and consequently no low-energy
optical branch appears along Z, since any optical
mode involves J, (if the packing was ABAB, the
crystal would be hexagonal with four atoms per
cell and low-energy optical magnons would appear).
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FIG. 2. True lattice of Cr®* ions in CrBry. The heavy
lines connect RS atoms with the exchange parameter J 15
and the dashed lines RS atoms with the exchange param-
eter J,.

Although the two models have very different
structural properties, they give rise to very sim-
ilar magnon spectra since in each case there are
two atoms per cell and the limit of the Brillouin
zone along z is the same (two planes translated by
¢ are identical irrespective of translation xy). The
Z and A branches depend only on J ; or J; (the dis-
persion law is almost isotropic in the two models),
and the Z acoustical branch only on J; or J, (in a
k, mode, the spins of one plane remain in phase).
The optical z branches are slightly different be-
cause one finds RRR or RS atoms along z. Be-
cause J; >J,, the acoustical (R and S in phase) or
optical (R and S opposite in phase) character of the
2 branches remains from I' to Z.

The limits of the Brillouin zone in directions
perpendicular to z are different in the two models,
but this difference is not meaningful for the ther-
modynamical properties, since the corresponding
magnons have very high energies. The main dif-
ference between the models lies in the packing of
the planes (only RS links along z) which explains
the difference between D and D’, easily detected
by neutron diffraction. This difference may be
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thought of as arising from the mixing of J; and J,
in Jzg (see Fig. 2) in the true model, whereas in
the simplified model, Jgp~J,, and Jzg~J;. As

a final point, we note that both models exhibit a
strong directional dependence of the renormaliza-
tion, and that in the five-parameter model, as
well as the simplified one, two effective renormal-
ization coefficients £, and £, which are & inde-
pendent in the first-order theory, may be intro-
duced. Our calculations show that this result is
valid also for the optical modes.

V. CONCLUSION

Previous authors® were unable to explain simul-
taneously the magnetization and the susceptibility
of CrBr; in the frame of the two-parameter model
introduced in Ref. 2, even when correlation effects
were taken into account. We have shown that this
is not due to some failure of the spin-wave theory,
and that explanation by means of this theory be-
comes possible when the true crystallographic
structure is used. The values we have obtained
for the different exchange parameters agree with
the values deduced from the spin-wave spectrum
as determined by neutron diffraction.

The above result is not a consequence of the
large number of exchange parameters introduced
in the true model, since in fact just two nonzero
parameters, J; and J,, are sufficient to explain
the low-temperature thermodynamical properties
(but not the entire spin-wave spectrum), but is
due to the introduction of the true crystal structure
(and its main consequence: D’#D). CrBrg is not
a simple stacking of identical planes, as consid-
ered in the simplified model, and the propagation
of any spin wave implies both longitudinal and
transverse exchange parameters.

Finally, we note that Narath and Davis were
able to explain simultaneously the magnetization
and the susceptibility of CrCly** in the ferromag-
netic phase with the simplified two-parameter
model. According to the preceding discussion,
this is due to the fact that J; is almost zero in
CrCl; and then D'SD. It is suspected, on the con-
trary, that the simplified model would be unable
to explain the thermodynamics of Crlg, ** whose two-
dimensional character is less marked.
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The temperature dependence of the elementary excitation energy in a dipolar Hamiltonian
has been studied by the Green’s-function equation-of-motion method. The result differs from

that given by Charap and reduces to it for B=F=0.
der of an iterative procedure coincides with the Holstein~-Primakoff result.

The magnetization calculated at zero or-
The criterion of

stability of the ferromagnetic state has been found to be temperature dependent.

I. INTRODUCTION

Several models have been introduced in order to
explain the properties of 3d electrons in magnetic
solids in connection with the concept of itinerant
versus localized nature of these electrons. Con-
siderable interest has also been shown in recent
years by experimentalists on the reliability of these
models. In particular an extensive effort has been
made in two directions: measuring the magnon dis-
persion law for a wide range of momentum transfer
and studying their temperature dependence. !

The dispersion law has been studied as a function
of the temperature for various materials with dif-
ferent experimental methods such as spin-wave
resonance, % neutron diffraction, energy analysis by
triple-axis spectrometry, and small-angle scatter-
ing techniques.® Since the temperature dependence
is different in different models, we can distinguish
among them.

Theoretically the temperature dependence of the
magnon dispersion law in the Heisenberg model has
been found by a perturbation method? and by solving
temperature-dependent Green’s-function equations
of motion in some approximation.®

In this paper we consider anisotropy effects. We
assume a more general Hamiltonian as a sum of the

‘Heisenberg and dipolar terms:
H=H,+H,;,
where
He= -ZJlmgl' -S.m'*'zlJ'BZCZ: Sl’ ’
im 1 (1)
Hy= 2 %dlm[ §x : §m - 3"’;3:(§1' ;lm)(gm' ;m)] .
i>m
Magnetic quadrupole interactions, also invoked to
explain ferromagnetic anisotropy, are neglected;
in fact their ratio to the dipole-dipole interaction
need only be ~ I% 8 We can express H, in terms of
raising and lowering operators:

Hy,=HS+H ;+H;+H7 +H ,
where

H2=Z) Elm(gl'gm—ssl‘s;n) ’
1#m

H;: E Flms;sr’n ’
1#m

Hi=23 F,SiS% ,

1#m



